A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

Authors

  • Hadi Beitollai Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
  • Reza Zaimbashi Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
Abstract:

Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid and sensitive detection of the paracetamol based on screen-printed modified electrode (SPE) with Cu nanocomplex (Cu) in pH=7.0. The paracetamol is not stable in strong acidic and strong alkaline media, and is hydrolyzed and hydroxylated. However, it is stable in intermediate pHs due to the dimerization of paracetamol. The kinetics of the paracetamol oxidation was briefly studied and documented in the schemes. In addition, the characterization of Cu nanocomplex was probed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Moreover, the voltammetry determined the paracetamol with the linear concentration ranging from 10.0 to 1000.0 μM and the lower detection limit of 1.0 μM. This method was also successfully used to detect the concentration of paracetamol in pharmaceutical formulations and urine samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

full text

An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

full text

A New Electrochemical Sensor for Determination of Zolpidem by Carbon Paste Electrode Modified with SnS@SnO2NP

Zolpidem is a drug that is easily attached to the GABA receptors in the brain. This property makes it very effective for tranquilizing as well as hypnagogia. According to the advantages of electrochemical analysis like high selectivity, high sensitivity, low concentration of analyte, cost-effective, portable and easy-to-use setup, they gained high amount of attention among scientists for determ...

full text

Sensitive Electrochemical Capsaicin Sensor Based on a Screen Printed Electrode Modified with Poly(sodium 4-styrenesulfonate) Functionalized Graphite.

A sensitive capsaicin sensor was constructed based on a poly(sodium 4-styrenesulfonate) functionalized graphite modified screen printed electrode (PSS-Grp/SPE) in this study. The PSS-Grp and poly(diallyldimethylammonium chloride) functionalized graphite (PDDA-Grp) were easily synthesized by interacting Grp with PSS and PDDA through sonication, and resulted in negative and with positive charges ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  151- 158

publication date 2017-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023